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Abstract

In this project work, we develop an EOQ model for deteriorating items with time-

varying demand. In the model, shortages are allowed and partially backlogged. The

backlogging rate is variable and dependent on the waiting time for the next replen-

ishment. Analytical results show that the optimal re-order time of the proposed

model is unique and is independent of the form of the demand rate. Results are

illustrated with the help of numerical examples. Computational results show that a

decrease in the backlogging parameter causes the lower average total cost per unit

time. Sensitivity of the solution to changes in the value of input parameters of the

base example is also carried out.

Keywords: Deterioration, Time-varying demand, Partial backlogging.

1. Introduction

Most of the physical goods undergo decay or deterioration overtime. Commodi-

ties such as fruits, vegetables, foodstuffs, etc., suffer from depletion by direct spoilage

while kept in store. Highly volatile liquids such as gasoline, alcohol, turpentine, etc.

undergo physical depletion over time through the process of evaporation. Electronic

goods, radioactive substances, photographic film, grain, etc. deteriorate through
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a gradual loss of potential or utility with the passage of time. Thus decay or deteri-

oration of physical goods in stock is a very realistic feature and inventory modellers

felt the need to take this factor into consideration.

In recent years, inventory problems for deteriorating items have been widely

studied after Ghare and Schrader (1963). They presented an EOQ model for an ex-

ponentially decaying items. Later, Covert and Philip (1973) formulated the model

with variable deterioration rate with two-parameter Weibull distribution. Philip

(1974) then developed the inventory model with a three-parameter Weibull distri-

bution rate and no shortages. Shah and Jaiswal (1977) extended Philip’s (1974)

model and considered that shortages are allowed. In different times, inventory re-

searchers developed various features of inventory models with a time-dependent

deterioration rate. Interested reader may consult the researchers by Mishra (1975),

Fujiwara (1993), Hariga and Benkherouf (1994), Wee (1995), Su et al. (1996), Lin et

al. (2000), Wu and Ouyang (2000), Manna and Chaudhuri (2001, 2006), Mukhopad-

hyay et al. (2004) and Goyal and Giri (2001).

In the above literatures, almost all the inventory models for deteriorating items

assume that the deterioration occurs as soon as the retailer receives the commodities.

However, in real life, most of the physical goods would have a span of maintaining

quality or the original condition(e.g. vegetables, fruit, fish, meat and so on) namely,

during that period, there was no deterioration occuring. We term the phenomenon

as ”non-instantaneous deterioration”. In this regard, Wu et al. (2006) developed an

optimal replenishment policy for non-instantaneous constant deteriorating items.

The assumption of constant demand is not always applicable to real situations.

For instance, it is usually observed in the super market that display of the consumer

goods in large quantities attracts more customers and generates higher demand.

This observation has influenced researchers to introduce a time-varying demand

pattern in inventory modelling. Donaldson (1977) was the first to solve analytically

the EOQ model, where demand was assumed to be a linearly increasing function of

time. Resh et al. (1976) derived an algorithm to determine the optimal number of

replenishments and timing for a linearly increasing demand pattern. Barbosa and

Friedman (1978) then generalised the solutions for power form demand functions.
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Furthermore, Henery (1979) extended the demand pattern to be of any log con-

cave form. Dave and Patel (1981) considered an inventory model for deteriorating

items with time-proportional demand when shortages are prohibited. Silver (1979)

formulated a very simple inventory replenishment decision rule for the special case

of positive trended demand. Wu (2001, 2002) further investigated the inventory

model with ramp type demand rate. However, he did not guarantee the existence

and uniqueness of his solution. Recently, Giri et al. (2003) extended the ramp type

demand inventory model with a more generalized Weibull deterioration distribution.

Furthermore, when the shortages occur, some customers are willing to wait for

backorder and others would turn to buy from other sellers. Many researchers such

as Park ( 1982), Hollier and Mak (1983) and Wee (1995) consider the constant

partial backlogging rates during the shortage period in their inventory models. For

fashionable commodities and high-tech products with short product life cycle, the

length of the waiting time for the next replenishment is the main factor for deciding

whether the backlogging will be accepted or not. The willingness of a customer

to wait for backlogging during a shortage period is declined with the length of

the waiting time. To reflect this phenomenon, Chang and Dye (1999) developed

an inventory model in which the proportion of customers who would like to accept

backlogging is the reciprocal of a linear function of the waiting time. Recently, many

researchers have modified inventory policies by considering the ”time-proportional

partial backlogging rate” such as Abad (2000), Papachristos and Skouri (2000),

Chang and Dye (2001), Wang (2002), Dye and Ouyang (2005), etc.

In the present paper, the EOQ model is developed for time-dependent deterio-

rating items. In addition, we also assumed that demand rate is time-varying and

backlogging rate is variable and dependent on the waiting time for the next re-

plenishment. Results are illustrated with the help of numerical examples. Finally,

sensitivity of the solution to changes in the value of input parameters associated

with the model is discussed.
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2. Assumptions

The mathematical model with a infinite rate of replenishment is developed with

the following assumptions.

(i) Lead time is zero.

(ii) Replenishment size is constant.

(iii) Shortages are allowed and only a fraction of demand is backlogged.

(iv) During the shortage period, the backlogging rate is variable.

(iv) Backlogging rate is dependent on the length of the wait time for the next re-

plenishment. The longer the wait time is, the production of customers who would

like to accept backlogging at time t is decreases with the wait time waiting for the

next replenishment.

3. Notations

C1: Inventory holding cost per unit per unit of time.

C2: Shortage cost per unit per unit of time.

C3: Opportunity cost due to lose sales per unit time.

C4: Cost of each deteriorated units.

T : Fixed length of each ordering cycle.

D(t): Demand rate at any instant t.

θ(t): Inventory deterioration rate.

In addition, we make the following assumptions and notations:

θ(t) = αeβt is the deterioration rate, where α(> 0) and β(≥ 0) are respectively scale

and shape parameters. (For β = 0, deterioration rate is constant.)

B(t) = 1
1+δt

, where backlogging parameter δ is a positive constant. The longer the

waiting time is the proportion of customers who would like to accept backlogging

at time t is decreases with the wait time (T − t) waiting for the next replenishment.

Thus the demand rate at time t is partially backlogged at fraction B(T − t).
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4. Model Formulation

In this paper, the replenishment problem of non-instantaneous deteriorating item

with partial backlogging is considered. Replenishment is made at time t = 0 when

inventory level is its maximum, S. The inventory level decreasing until at time t1

when it reaches the zero level. The decrease in inventory during the time inter-

val [0, t1], occurs mainly to meet demand and partly for deterioration. Shortages

are allowed to occur during the time interval [t1, T ] and some part of shortage is

backlogged and other part of it is the lost sales. Only the backlogging items are

replaced by the next replenishment. Behaviour of the inventory system is depicted

in Figure-1.

Let I(t) be the inventory level at any time t (0 ≤ t ≤ T ) the differential equa-

tions governing the instantaneous states of I(t) in the interval [0, T ] are given by,

dI(t)

dt
+ θ(t)I(t) = −D(t), 0 ≤ t ≤ t1 (1)

with the condition I(0) = S

dI(t)

dt
= −D(t)B(T − t), t1 ≤ t ≤ T (2)

with the condition I(t1) = 0

putting θ(t) = αeβt in (1) we get,

dI(t)

dt
+ αeβtI(t) = −D(t), 0 ≤ t ≤ t1

This is 1st order linear differential equation. It’s solution is,

I(t) = e−
α
β
eβt [Se

α
β −

∫ t

0
D(x)e

α
β
eβxdx] (3)

Again from (2) we get,

dI(t)

dt
= −D(t)B(T − t), t1 ≤ t ≤ T

= − D(t)

1 + δ(T − t)
[Since B(t) = 1

1+δt
]

Therefore, I(t) = −
∫ t

t1

D(x)

1 + δ(T − x)
dx (4)
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The solutions of (1) and (2) are as follows:-

I(t) =

 e−
α
β
eβt [Se

α
β −

∫ t
0 D(x)e

α
β
eβxdx], 0 ≤ t ≤ t1

−
∫ t
t1

D(x)
1+δ(T−x)

dx, t1 ≤ t ≤ T
(5)

where,

S = e−
α
β

∫ t1

0
D(x)e

α
β
eβxdx (6)

Accumulated inventory over the period [0, t1] is expressed by,

HT =
∫ t1

0
I(t)dt (7)

=
∫ t1

0
{e−

α
β
eβt [Se

α
β −

∫ t

0
D(x)e

α
β
eβxdx]}dt

=
∫ t1

0
{e−

α
β
eβt [

∫ t1

0
D(x)e

α
β
eβxdx−

∫ t

0
D(x)e

α
β
eβxdx]}dt [using (6)] (8)

=
∫ t1

0
e−

α
β
eβt [

∫ t1

t
D(x)e

α
β
eβxdx]dt (9)

Amount of shortage during the period [t1, T ] is given by,

BT = −
∫ T

t1
I(t)dt

=
∫ T

t1
[
∫ t

t1

D(x)

1 + δ(T − x)
dx]dt

=
∫ T

t1

(T − t)D(t)

1 + δ(T − t)
dt [See appendix I]

The amount of lost sales during the time interval[t1, T ] is given by,

LT = Demand in [t1, T ] - partial backlog amount in [t1, T ]

=
∫ T

t1
D(t)dt−

∫ T

t1
D(t)B(T − t)dt

=
∫ T

t1
D(t)dt−

∫ T

t1

D(t)

1 + δ(T − t)
dt

= δ
∫ T

t1

(T − t)D(t)

1 + δ(T − t)
dt (10)

Total number of deteriorated items during [0, t1] is written by,

DT = S - total demand in [0, t1]

= e−
α
β

∫ t1

0
D(x)e

α
β
eβxdx−

∫ t1

0
D(t)dt

= e−
α
β

∫ t1

0
D(t)e

α
β
eβtdt−

∫ t1

0
D(t)dt (11)
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Average total cost AC during the time interval [0, T ] is expressed by,

AC(t1) =
C1HT + C2BT + C3LT + C4DT

T

=
1

T
{C1

∫ t1

0
e−

α
β
eβt [

∫ t1

t
D(x)e

α
β
eβxdx]dt

+(C2 + C3δ)
∫ T

t1

(T − t)D(t)

1 + δ(T − t)
dt

+C4[e
−α

β

∫ t1

0
D(t)e

α
β
eβtdt−

∫ t1

0
D(t)dt]} (12)

The first and second order derivative of AC(t1) with respect to t1 are given by,

dAC(t1)

dt1
=

D(t1)

T
[C1e

α
β
eβt1

∫ t1

0
e−

α
β
eβtdt− (C2 + C3δ)

(T − t1)

1 + δ(T − t1)

+C4(e
−α

β e
α
β
eβt1

d2AC(t1)

dt21
=

D/(t1)

T
[C1e

α
β
eβt1

∫ t1

0
e−

α
β
eβtdt− (C2 + C3δ)

(T − t1)

1 + δ(T − t1)

+C4(e
−α

β e
α
β
eβt1 − 1)]

+
D(t1)

T
[C1 +

C2 + C3δ

{1 + δ(T − t1)}2
+ C4αe

−α
β e

α
β
eβt1

+C1

∫ t1

0
e−

α
β
eβtαeβt1e

α
β
eβt1dt] (14)

Now
dAC(t1)

dt1
= 0 gives,

C1e
α
β
eβt1

∫ t1

0
e−

α
β
eβtdt− (C2 + C3δ)

(T − t1)

1 + δ(T − t1)
+ C4(e

−α
β e

α
β
eβt1 − 1) = 0 (15)

Here
dAC(t1)

dt1
= 0, gives the necessary condition for AC(t1) to be minimum.

Therefore, the sufficient condition for minimum average total cost is satisfied.

Optimal S is given by,

S∗ = e−
α
β

∫ t∗1

0
D(t)e

α
β
eβtdt (16)

and optimal ordering units Q is expressed as,

Q∗ = S∗ +
∫ T

t∗1

D(t)

1 + δ(T − t)
dt (17)

Moreover, from equation (12), the minimum average total cost per unit time is

AC(t∗1).

7

− 1)] [See appendix II] (13)
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for given input parameters. Minimum average total cost AC, optimal S and optimal

5. Computational Results

The total average cost is the function of single variable t1. Our objective is to

determine t1 which minimise the cost function AC(t1). Using subroutine Find root

in Mathematica 4.1, we solve equation (13) to find t1 satisfying the proposition

order quantity Q are calculate from (12), (16) and (17).

To illustrate, consider the base example C1 = 3, C2 = 15, C3 = 20, C4 = 5, δ = 0.5,

α = 0.2, β = 0.9, T = 1 and D(t) = 20+ 2t in appropriate units. The optimal solu-

tion is t∗1 = 0.817492 and the corresponding optimal S, Q and AC are S∗ = 18.9988,

Q∗ = 22.8098 and AC∗ = 40.7805. For D(t) = 60e−0.98t in the base example, the

AC∗ = 77.3779 respectively. For δ = 0 in the above two base examples, the optimal

solution for t∗1 are given by (0.750754, 0.750754) and optimal values of S, Q and AC

are (17.1909, 34.6918), (22.6122, 41.0494) and (36.781, 69.8209) respectively.

It is noted that the average total cost per unit is an increasing function of the pa-

rameter δ. This implies that the model with this type of partial backlogging always

has smaller average total cost per unit time than that with complete backlogging.

To study the effect of change in the input parameters C1, C2, C3, C4, δ, α, β, T on

the optimal value of t1(t
∗
1), optimal on hand inventory (S∗), optimal order quantity

(Q∗), optimal average system cost (AC∗) derived from the proposed model, a sen-

sitivity analysis is performed by considering two numerical examples for the case of

partial backlogging given above. Sensitivity analysis is done by changing (increasing

or decreasing) the parameters by 25% and 50% and taking one parameter at a time.

Keeping the remaining parameters at their original values. From Tables 1-2, it is

seen that the percentage change in the cost is almost equal for both positive and

negative changes of all the parameters. The average optimal cost is highly sensitive

to T .

8
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Table 1: Sensitivity analysis for D(t) = 20 + 2t in the base example

changing (%)

para- (%) change

meter change t∗1 S∗ Q∗ AC∗ in AC∗

C1 +50 0.769424 17.6907 22.4422 51.3831 +25.999

+25 0.792842 18.3241 22.6205 46.2484 +13.4079

-25 0.843452 19.7187 23.0113 34.9503 -14.2966

-50 0.870808 20.4879 23.2261 28.7252 -29.5616

C2 +50 0.85364 20.0039 23.091 42.7589 +4.85122

+25 0.837553 19.5543 22.9654 41.8761 +2.68649

-25 0.791777 18.2951 22.6123 39.3847 -3.42272

-50 0.757628 17.3744 22.353 37.5458 -7.93215

C3 +50 0.843295 19.7143 23.6101 42.1907 +3.45802

+25 0.831375 19.3826 22.9173 41.5381 +1.85759

-25 0.801117 18.5497 22.6839 39.8907 -2.18215

-50 0.781515 18.0168 22.534 38.8304 -4.78201

C4 +50 0.793802 18.3502 22.6278 45.6129 +11.8496

+25 0.805437 18.6678 22.717 43.2404 +6.03182

-25 0.829995 19.3444 22.9066 38.2279 -6.25941

-50 0.842976 19.7055 23.0076 35.5764 -12.7613

δ +50 0.838353 19.5766 22.909 42.0132 +3.02273

+25 0.828599 19.3057 22.8604 41.4383 +1.61281

-25 0.804704 18.6477 22.7578 40.0199 -1.86512

-50 0.789791 18.2411 22.7056 39.1289 -4.05021

α +50 0.783219 19.0585 23.5426 47.0017 +15.2552

+25 0.800231 19.0415 23.1931 43.9246 +7.70975

-25 0.834933 18.9285 22.392 37.5749 -7.86085

-50 0.852478 18.8289 21.9396 34.3142 -15.8564

9
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Table 1: continued...

changing (%)

para- (%) change

meter change t∗1 S∗ Q∗ AC∗ in AC∗

β +50 0.800791 18.857 22.9976 42.8642 +5.10932

+25 0.809558 18.9359 22.9039 41.7813 +2.45401

-25 0.824625 19.0476 22.7169 39.859 -2.25968

-50 0.831002 19.0841 22.6262 39.013 -4.33429

T +50 1.17017 29.7349 36.6586 67.7193 +66.0579

+25 1.00037 24.2905 29.5257 53.5725 +31.3677

-25 0.623934 13.9108 16.5239 29.188 -28.4267

-50 0.421951 9.04868 10.6506 18.6293 -54.3183

Table 2: Sensitivity analysis for D(t) = 60e−0.98t in the base example

changing (%)

para- (%) change

meter change t∗1 S∗ Q∗ AC∗ in AC∗

C1 +50 0.769424 35.3534 40.8557 99.0847 +28.0529

+25 0.792842 36.1731 41.0864 88.6335 +14.5463

-25 0.843452 37.9079 41.5726 65.2222 -15.7096

-50 0.870808 38.8254 41.8288 52.056 -32.725

C2 +50 0.85364 38.2512 41.6686 81.3464 +5.12872

+25 0.837553 37.7082 41.5168 79.5688 +2.83142

-25 0.791777 36.1361 41.076 74.6102 -3.57693

-50 0.757628 34.9362 40.7381 71.0021 -8.23983

C3 +50 0.843295 37.9026 41.5711 80.2011 +3.64856

+25 0.831375 37.4984 41.4581 78.8911 +1.9551

-25 0.801117 36.4602 41.1671 75.6104 -2.28433

-50 0.781515 35.778 40.9753 73.5181 -4.98831

10
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Table 2: continued...

changing (%)

para- (%) change

meter change t∗1 S∗ Q∗ AC∗ in AC∗

C4 +50 0.793802 36.2065 41.6958 84.3805 +9.04977

+25 0.805437 36.6095 41.209 80.918 +4.57505

-25 0.829995 37.4514 41.4449 73.7577 -4.67863

-50 0.842976 37.8918 41.5681 70.0547 -9.46419

δ +50 0.838353 37.7353 41.4526 79.7608 +3.07951

+25 0.828599 37.4039 41.3908 78.6456 +1.63828

-25 0.804704 36.5842 41.2565 75.9218 -1.8818

-50 0.789791 36.0669 41.1855 74.2283 -4.07048

α +50 0.783219 37.5139 42.6684 86.796 +12.1716

+25 0.800231 37.2885 42.0174 82.1211 +6.12987

-25 0.834933 36.7201 40.5927 72.5705 -6.21239

-50 0.852478 36.3758 39.8213 67.7054 -12.5004

β +50 0.800791 36.937 41.652 80.1153 +3.53771

+25 0.809558 36.99 41.4873 78.6962 +1.70371

-25 0.824625 37.0425 41.1679 76.1562 -1.57898

-50 0.831002 37.0475 41.0164 75.026 -3.03955

T +50 1.17017 48.081 53.0328 102.369 +32.2979

+25 1.00037 42.9956 47.6816 90.7592 +17.2933

-25 0.623934 29.9967 33.7381 62.0202 -19.8477

-50 0.421951 21.6898 24.6139 44.3509 -42.6828
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6. Managerial Implications

The assumptions of constant demand is not always applicable to real situations.

For instance, it is usually observed in the super market that display of the customer

goods in large quantities attracts more customers and generates higher demand.

This observation has influenced researchers to introduce a time-varying demand pat-

tern in inventory modelling. When the shortages occur, some customers are willing

to wait for back-order and others would turn to buy from others sellers. For fashion-

able commodities and high-tech products with short product life cycle, the length of

the waiting time for the next replenishment is the main factor for deciding whether

the backlogging will be accepted or not. The willingness of a customer to wait for

backlogging during a shortage period is declined with the length of the waiting time.

7. Concluding Remarks

In this paper, a deterministic inventory model has been developed for deteriorating

items and time varying demand. Shortages are allowed. The backlogging rate is

variable and dependent on the waiting time for the next replenishment. Analytical

results indicate that the optimal re-order time of the proposed model is unique and

independent of the form of demand rate. Computational results show that a de-

crease in backlogging parameter causes the lower average total cost per unit. The

effect of the scale(α) and shape(β) parameter are also discussed. Average total cost

per unit time is an increasing function of the parameter δ which implies that the

model for such kind of partial backlogging always has smaller average total cost per

unit time than that of complete backlogging. The proposed model can be used in

inventory control of certain non-instantaneous deteriorating items such as electronic

components, food items, fashionable commodities and others.

Acknowledgment

I am indebted to my M. Sc. project supervisor for giving helpful suggestions and

12

© 2019 JETIR March 2019, Volume 6, Issue 3         www.jetir.org  (ISSN-2349-5162)  

 

JETIRAE06001 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 12 



comments for developing this project work. The authors express their thanks to

Department of Mathematics, Narasinha Dutt College, Howrah, for providing infras-

tructural support to carry out this work.

References

Abad, P. L., 2000, Optimal lot-size for a perishable good under conditions of

finite production and partial backordering and lost sale. Computers and Indus-

trial Engineering, 38, 457−465.

Barbosa, L. C. & Friedman, M., 1978, Deterministic inventory lot-size models

− a general root law. Management Science, 24, 819−826.

Chang, H. J. & Dye, C. Y., 1999, An EOQ model for deteriorating items with

time varying demand and partial backlogging. Journal of the Operational Re-

search Society, 50, 1176−1182.

Chang, H. J. & Dye, C. Y., 2001, An inventory model for deteriorating items

with partial backlogging and permissible delay in payments. International Jour-

nal of Systems Science, 32, 345−352.

Covert, R. P. & Philip, G. C., 1973, An EOQ model for items with Weibull

distribution deterioration. AIIE Transactions, 5, 323−326.

Dave, U. & Patel, L. K., 1981, (T , Si) policy inventory model for deteriorating

items with time proportional demand. Journal of the Operatioinal Research So-

ciety, 32, 137−142.

Donaldson, W. A., 1977, Inventory replenishment policy for a linear trend in

demand − an analytical solution. Operational Research Quarterly, 28, 663−670.

Dye, C. Y. & Ouyang, L. Y., 2005, An EOQ model for perishable items under

stock-dependent selling rate and time-dependent partial backlogging. European

Journal of Operational Research, 163, 776−783.

Fujiwara, O., 1993, EOQ models for continuously deteriorating products using

linear and exponential penalty costs. European Journal of Operational Research,

70, 104−114.

Ghare, P. M. & Schrader, G. F., 1963, An inventory model for exponentially

13

© 2019 JETIR March 2019, Volume 6, Issue 3         www.jetir.org  (ISSN-2349-5162)  

 

JETIRAE06001 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 13 



deteriorating items. Journal of Industrial Engineering, 14, 238−243.

Giri, B. C., Jalan, A. K. & Chaudhuri, K. S., 2003, Economic order quantity

model with Weibull deterioration distribution, shortage and ramp-type demand.

International Journal of Systems Science, 34(4), 237−243.

Goyal, S. K. & Giri, B. C., 2001, Recent trends in modelling of deteriorating

inventory. European Journal of Operational Research, 134, 1−16.

Hariga, M. A. & Benkherouf, L., 1994, Optimal and heuristic inventory replen-

ishment models for deteriorating items with exponential time-varying demand.

European Journal of Operational Research, 79, 123−137.

Henery, R. J., 1979, Inventory replenishment policy for increasing demand. Jour-

nal of the Operational Research Society, 30, 611−617.

Hollier, R. H. & Mak, K. L., 1983, Inventory replenishment policies for deterio-

rating items in a declining market. International Journal of Production Research,

21, 813−826.

Lin, C., Tan, B. & Lee, W. C., 2000, An EOQ model for deteriorating items with

time-varying demand and shortages. International Journal of Systems Science,

31(3), 391−400.

Manna, S. K. & K. S. Chaudhuri, 2001, An economic order quantity model for

deteriorating items with time-dependent deterioration rate, demand rate, unit

production cost and shortages. International Journal of Systems Science, 32(8),

1003−1009.

Manna, S. K. & Chaudhuri, K. S., 2006, An economic order quantity model with

ramp type demand rate, time-dependent deterioration rate, unit production cost

and shortages. European Journal of Operational Research, 171(2), 557−566.

Mishra, R. B., 1975, Optimum production lot-size model for a system with dete-

riorating inventory. International Journal of Production Research, 13, 495−505.

Mukhopadhyay, S., Mukherjee, R. N. & Chaudhuri, K. S., 2004, Joint pricing

and ordering policy for a deteriorating inventory. Computers and Industrial En-

gineering, 47, 339−349.

Papachristos, S. & Skouri, K., 2000, An optimal replenishment policy for deteri-

orating items with time-varying demand and partial backlogging. International

14

© 2019 JETIR March 2019, Volume 6, Issue 3         www.jetir.org  (ISSN-2349-5162)  

 

JETIRAE06001 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 14 



Journal of Production Economics, 83, 247−256.

Park, K. S., 1982, Inventory models with partial backorders. International Jour-

nal of Systems Science, 13, 1313−1317.

Philip, G. C., 1974, A generalised EOQ model for items with Weibull distribu-

tion deterioration. AIIE Transactions, 6, 159−162.

Resh, M., Friedman, M. & Barbosa, L. C., 1976, On a general solution of the

deterministic lot-size problem with time-proportional demand. Operations Re-

search, 24, 718−725.

Silver, E. A., 1979, A simple inventory replenishment decision rule for a linear

trend in demand. Journal of the Operational Research Society, 30, 71−75.

Shah, Y. K. & Jaiswal, M. C., 1977, An order-level inventory model for a system

with constant rate of deterioration. Opsearch, 14, 174−184.

Su, C. T., Tong, L. I. & Liao, H. C., 1996, An inventory model under Inflation

for stock-dependent consumption rate and exponential decay. Opsearch, 33(2),

72−82.

Wang, S. P., 2002, An inventory replenishment policy for deteriorating items

with shortages and partial backlogging. Computers and Operations Research,

29, 2043−2051.

Wee, H. M., 1995, A deterministic lot-size inventory model for deteriorating

items with shortages and a declining market. Computers and Operations Re-

search, 22, 345−356.

Wu, K. S., 2001, An EOQ inventory model for items with Weibull distribution

deterioration, ramp type demand rate and partial backlogging. Production Plan-

ning and Control, 12(8), 787−793.

Wu, K. S., 2002, EOQ inventory model for items with Weibull distribution de-

terioration, time-varying demand and partial backlogging. International Journal

of Systems Science, 33(5), 323−329.

Wu, K. S. & Ouyang, L. Y., 2000, A replenishment policy for deteriorating items

with ramp type demand rate. Proc. Natl.Sci. Counc. ROC(A), 24(4), 279−286.

Wu, K. S., Ouyang, L. U. & Yang, C. T., 2006, An optimal replenishment policy

for non-instantaneous deteriorating items with stock dependent demand and par-

15

© 2019 JETIR March 2019, Volume 6, Issue 3         www.jetir.org  (ISSN-2349-5162)  

 

JETIRAE06001 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 15 



tial backlogging. International Journal of Production Economics, 101, 369−384.

Appendix I.

From Fundamental theorem of integral calculus, we have following result

d

dα

∫ b(α)

a(α)
F (x, α)dx =

∫ b

a

∂F

∂α
dx+ F (b, α)

db

dα
− F (a, α)

da

dα
(18)

Now, BT =
∫ T

t1
[
∫ t

t1

D(x)

1 + δ(T − x)
dx]dt

=
∫ T

t1
u(t)dt

where,

u(t) =
∫ t

t1

D(x)

1 + δ(T − x)
dx

Therefore,

du(t)

dt
=

D(t)

1 + δ(T − t)
[Using (18).]

or,
(T − t)D(t)

1 + δ(T − t)
= (T − t)

du(t)

dt

or,
∫ T

t1

(T − t)D(t)

1 + δ(T − t)
dt =

∫ T

t1
[(T − t)

du(t)

dt
]dt

or,
∫ T

t1

(T − t)D(t)

1 + δ(T − t)
dt = [(T − t)u(t)]Tt1 +

∫ T

t1
u(t)dt

=
∫ T

t1
[
∫ t

t1

D(x)

1 + δ(T − x)
dx]dt

Therefore,

BT =
∫ T

t1

(T − t)D(t)

1 + δ(T − t)
dt

Appendix II.

Let, F1(t, t1) = e−
α
β
eβt [

∫ t1
t D(x)e

α
β
eβxdx]
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Here, F1(t, t1) = 0

∂F1

∂t1
= e−

α
β
eβtD(t1)e

α
β
eβt1 [Using (18).]

or,
∫ t1

0

∂F1

∂t1
=

∫ t1

0
e−

α
β
eβtD(t1)e

α
β
eβt1dt

= D(t1)e
α
β
eβt1

∫ t1

0
e−

α
β
eβtdt

Let,

F2(T, t1) =
∫ T

t1

(T − t)D(t)

1 + δ(T − t)
dt

= −
∫ t1

T

(T − t)D(t)

1 + δ(T − t)
dt

∂F2

∂t1
= −(T − t1)D(t1)

1 + δ(T − t1)
[Using (18).]

Here, F2(t, t1) = 0

Let,

F3(t1) = e−
α
β

∫ t1

0
D(t)e

α
β
eβtdt−

∫ t1

0
D(t)dt

∂F3

∂t1
= D(t1)e

−α
β
eβt1dt−D(t1)dt [Using (18).]

Therefore,

dAC(t1)

dt1
=

D(t1)

T
[C1e

α
β
eβt1

∫ t1

0
e−

α
β
eβtdt− (C2 + C3δ)

(T − t1)

1 + δ(T − t1)

+C4(e
−α

β e
α
β
eβt1 − 1)]

d2AC(t1)

dt21
=

D/(t1)

T
[C1e

α
β
eβt1

∫ t1

0
e−

α
β
eβtdt− (C2 + C3δ)

(T − t1)

1 + δ(T − t1)

+C4(e
−α

β e
α
β
eβt1 − 1)]

+
D(t1)

T
[C1 +

C2 + C3δ

{1 + δ(T − t1)}2
+ C4αe

−α
β e

α
β
eβt1

+C1

∫ t1

0
e−

α
β
eβtαeβt1e

α
β
eβt1dt]
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